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An advanced kinetic simulation method has been developed and
implemented in the HIDENEK code to study large space-scale, low-
frequency electromagnetic phenomena occuiring in inhomogeneous
plasmas. The present method is specially designed for high magnetic
field (w.,, > w,,), inhomogenaous plasma simulations. The guiding-
center approximation with magnetic drifts is adopted to the per-
pendicular mation of the electrans, whereas the inertia effect is retained
in their parallel motion. Also, a slightly backward time-decentered
scheme is introduced to the equations of motion and the Maxwell
equations. These equations are combined to yield the full-implicit,
coupled field-particle equations which allow us to determine the future
electromagnetic field in a large time step compared to the electron time
scales with the diamagnetic drift and magnetization currents being
included. As a demonstration of the present simulation method, three
physics applications are shown for the eleciromagnetic beam-plasma
instability, the temperature anisotropy-driven Alfven-ion-cyclotron
instability. and the external kink instability of the peaked-density
current beam. A remarkable pitch-angle scattering of the ions is
observed in the first two applications in association with the plasma
instabilities. in the third application to an inhomogeneous, finite-beta
ptasma of the three dimensions, a helical deformation is shown to take
place to the initially straight beam and magnetic axis in an ideal
magnetohydrodynamic time scale.  © 1993 Academic Press, Inc.

1. INTRODUCTION

A fully nonlinear evolution of the low-frequency, kinetic
instabilities and associated transport of encrgy and particles
in plasmas have remained an important but unresolved
issue of plasma physics for more than past two decades. In
the meantime, as an origin of these instabilities and trans-
port a certain rcalm of the high-temperature plasmas has
attracted our attention in which microscopic, kinetic pro-
cesses strongly affect macroscopic plasma characteristics
and processes with magnetohydrodynamic (MHD) time-
and-space scales.

Concerning the above statement, many significant
phenomena of space and fusion plasmas are known to take
place in this kinetic and macroscopic regime. For example,
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ion kinetic effects on the m=1 kink mode {1] and
behaviors of fusion-produced energetic alpha particles [2]
in ignited tokamaks are just a few of important low-
frequency, kinctic problems of the magnetically confined
fusion plasnas. In space and astrophysics, we can find more
varietics of such plasma phenomena. We list, to name only
a few, magnetic reconnection—an active agent of magnetic
energy release whose dissipation layer has a thickness com-
parable to gyroradius or inertia length of ions [37], and the
kinetic Alfven wave which induces substantial wave—
particle interactions with its longitudinal (non-MHD)
electric field [4].

Since the aferementioned plasma phenomena are fre-
quently accompanied by strong nonlinear processes, a
numerical simulation has been considered to be the only
one reliable approach Jor theoretical studies. However, until
recently it was quite difficult to study these nonlinear
plasma processes using either the conventional time-
explicit/hybrid particle codes or the MHD fluid code. This
was precisely attributed to both a kinetic nature of such
plasmas and a disparity of their time-and-space scales with
currently uninteresting high-frequency, short-wavelength
plasma eigenmodes or light waves. By contrast, during the
entire 1980s several types of new and advanced simulation
methods were devised in order to overcome the difficuities.
These research results are well-documented in Ref. [5-87.
As will be briefly reviewed in this section, the new simula-
tion methods were successfulty applied to various nonlinear
phenomena in high-temperature plasmas.

To summarize, what has been required to the new type of
the kinetic, large MHD-scales simulation methods is an
ability to treat (1} various kinetic (particle} effects such as
the Landau, cyclotron, and bounce resonances with low-
frequency waves and those due to finite Larmor radius and
complicated particle trajectories, (2) a space-charge electric
field and a finite-speed plasma relaxation arising from non-
zero electron inertia, and (3) nonlinear plasma processes
under the non-microscopic time-and-space scales, ie.,
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{duration time)» ', w.' and (spatial scale)» 4., p,.

Here, w,,, w, are the plasma and cyclotron frequencies,
respectively, and 4, p, are the Debye and gyroradius of the
clectrons. Moreover, it should be emphasized that magneti-
cally confined plasmas are often strongly magnetized
(w.>w,) and quite inhomogeneous; the strength and
otientation of the magnetic field changes in space and time.
The electron diamagnetic drift and magnetization currents
are important in the finite-beta (temperature} plasmas.
In fact, these (equivalent} drift velocities are given by
vp~ (T feB) A= 1cflw /@, )(c/igw,.), where f,=
8nnT,/B’ is the electron beta value and A, is the gradient
scale length of density or the ambient magnetic field.

The new particle simulation methods developed in early
1980s have realized kinetic simulations of the low-
frequency, electromagnetic phenomena while climinating
the high-frequency electron plasma oscillations. However, a
difficnity with those methods was a small time step
w,. 4t < 0(0.1) in order to reproduce the diamagnetic and
magnetization effects of the electrons in high magnetic field,
high-beta plasmas. The uniqueness of the present implicit
particle simulation method, on the contrary, is its ability to
treat these diamagnetic drift and magnetization effects
under a much larger time step w. 41> 1. This permits
us more efficient and accurate simulations of strongly
magnetized, high-beta plasmas with much less time steps.
(It is also possible for the present method to choose the fuil-
kinetic electrons where the ambient magnetic field is weak
or absent (cf. Section 2.1)). In the following paragraphs,
several large time-and-space scale, kinetic simulation
methods are briefly reviewed.

The first successful implicit simulation method might be
the moment implicit method which derives the implicit
moment equations to obtain the future electromagnetic field
[9-11]. The moment equations involve a divergence of the
pressure tensor which, by relying on the fluid concept, is
related to the particle velocity moments to achieve a closure
of the moment equations. The velocity moments are
calculated once in each time step by summations over the
particles. This class of the particle code known as the
“VENUS” code was developed at Los Alamos National
Laboratory in early 1980s and was applied to laser irradia-
tion and various beam-plasma processes [12]. However,
the assumptions used in relating the pressure tensor with the
particle moments restricted the time step to a moderate
value w,, 4¢< 10 in warm kinetic plasma simulations. An
improved method has recently outgrown from the moment
implicit method to treat the warm plasmas with a large time
step and several demonstrations have been made for
one-dimensional plasmas (CELEST) [13].

The closely-coupled implicit method, which is a subject of
this paper, was devised in early 1984 as an electromagnetic
simulation method for multi-dimensional plasmas by
fellowing the intuition that the futureward time-shifted elec-
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tromagnetic field might act to preferentially suppress high
frequency oscillations in the plasma [7]. Now this method
satisfies the aforementioned three requirements and an
additional one for the advanced large-scale kinetic simula-
tion methods [147. The technically most characteristic
feature of this implicit method, which has been implemented
in the HIDENEK (hyper-implicit, decentered, and kinetic)
code, is a direct determination of the future electromagnetic
field using completely implicit, coupled kinetic equations.
Here, a predictor-corrector particle push is not used to
obtain unknown current and charge densities which act as
driving forces in the field equations. Hence, these coupled
kinetic equations are named “closely-coupled field-particle
{CCFP) equations.”

Another type of the implicit electromagnetic particle
simulation method which is called the direct implicit method
was developed at Livermore National Laboratory and the
University of Texas [15, 16]. This method constructs a
high-accuracy low-pass time filter by combining the electric
acceleration of a few time levels in the equations of motion
to control numerical damping of high-frequency waves in
the plasma. The future current density is explicitly predicted
by pushing particles and is implicitly corrected later in the
field equations. A recent progress in the filtering technique
is found in Ref. [177]. Basically, the direct implicit method
has the second-order (or more) accuracy in time, however,
it suffered from substantial and monotonic loss of the
particle kinetic energy during the course of the two-
dimensional simuiation [167.

The gyrokinetic particle simudation method {87 which was
motivated at the Princeton Plasma Physics Laboratory is
conceptually different from the implicit particle methods in
that it derives reduced field equations by gyro-averaging
the ion response under assumptions of smallness on the
wavelength and frequency k| /k, €1, w/w,; <1 and those
on the amplitude of the electromagnetic field. Many
insignificant terms are removed from the original kinetic
equations. Efficiency and accuracy of the simulation are
therefore quite reasonable when the ordering assumptions
are satisfied. However, when the assumptions become
marginally satisfied, which occurs with large electrostatic
disturbances edp/T,~O{1) at the plasma edge, for
example, or magnetic perturbations §B/B,~ Q(1) at the
magnetic reconnection, many correction terms are required
to make the simulation physically meaningful.

As possibly a comparable kinetic simulation method with
the implicit particle methods, the hybrid particle code with
particle ions and massless electrons is sometimes used for
the study of low-frequency electromagnetic phenomena
[18]. The hybrid code is quite efficient since the electron
kinetic effects are excluded and is therefore considered to
be valid when the electron inertia effects are completely
ignorable. This is the case with a simulation of the
perpendicular magnetosonic shock where the plasma is
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strongly magnetized with the magnetic field lying
perpendicularly to the simulation pltane [19]. However,
the hybrid code becomes increasingly unjustifiable as the
magnetic field becomes more oblique or parallel to the
simulation plane so that the electrons are allowed to move
along the ambient magnetic field in an inhomogeneous
medium.

In the following two paragraphs, the essence of the
closely-coupled implicit method is qualitatively described
in some depth. There was a preliminary (“semi-implicit”™)
version which was first developed and applied to variety
of large space-scale simulations such as an excitation of
the kinetic Alfven wave and associated plasma heating
[20], and current-beam injection and kink instability
[21]. However, the time step was limited to w, Ar<1.
Qualitatively a much improved version that can deal with
“homogencous™ kinetic plasmas in large time-and-space
scales was then developed [7]. The characteristics of the
algorithm were extensively studied and its validity was
proved both analytically and numericalily in the literature.
Recently the latter version of the code has greatly been
upgraded so that it can efficiently deal with high magnetic
field, high-beta kinetic plasmas in large MHD-scales [14].
Specifically, the guiding-center approximation with the
magnetic effects has been introduced to the electron motion.
The parallel motion along the magnetic field line is traced as
particles in a drift-kinetic fashion with —uV, B force
included. This enables us the treatment of the diamagnetic
and magnetization currents while eliminating both the
high-frequency electron cyclotron and plasma oscillations.
These time scales are of the same orders of magnitude in the
magnetically confined plasmas.

The key of the closely-coupled implicit method consists in
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its complete time-implicitness, By combining the Maxwell
equations with the equations of motion of particles, the
closely-coupled field-particle equations are derived which
directly determine the future electromagnetic field without
an auxiliary prediction of the current and charge densities.
These equations are solved actually in the real (configura-
tion) space because the implicitly-expressed current and
charge densities, which are the major driving terms of the
equations, vary counsiderably in space for inhomogeneous
plasmas. This makes the solution in the Fourier-space
difficult and inefficient. The characteristic features of the
closely-coupled implicit method are summmarized in Table L.
The fundamentally important feature here is that the
low-frequency electromagnetic waves and structures with
@, 4t € 1 are properly reproduced, where w,, is their charac-
teristic frequency and At is the time step of the simulation.
Since the jons and electrons are handied as the particle
species, various particle orbit effects are well simulated by
this method. Moreover, the method works numerically well,
both in the linear and nonlinear stages of the plasma pro-
cesses by virtue of the slightly backward time-decentered
scheme. These advanced features make the closely-coupled
implicit method quite suitable for studies of kinetic and non-
linear plasma phenomena occurring in large time-and-space
scales. .

The outline of this paper is the following. In Section 2, the
implicit algorithm of the closely-coupled implicit method
is described in detail, which has been implemented in the
HIDENEK code for the study of low-frequency electro-
magnetic phenomena in high magnetic ficld, inhomo-
geneous plasmas of multi-dimensions. A key approximation
and numerical methods are introduced in Section 3 which
permit us solution of the closely-coupled ficld-particle equa-

TABLE1
Characteristics of the HIDENEK Simulation Code

» Large time-and-space scales: e, 41 1, w, At 1, and Ax > ¢/w,,.

= Electromagnetic.

+ Multi-dimensions in any geometry (Cartesian, cylinder, torus).

« Inhomogeneous plasma density and magnetic field.
« Kinetic:

Ions: Full 3D particle dynamics.

Electrons: Parallel direction — 1D motion with ( —u ¥, B} force.

Perpendicular direction — Guiding-center drift motion.

(E x B, VB, curvature drifts)

Resonance effects (Landau, ¢yclotron, bounce resonances}

Orbit effects: Finite Larmor radius effects
- Diamagnetic and magnetization effects
Complicated particle trajectories
Finite speed relaxation due to electron inertia

included.
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tions under the limited computing resources. Numerical
stability and energy conservation are also discussed. Three
physics applications to the low-frequency, large-scale
kinetic plasmas are described in Sections 4-6. Especially in
Section 6, a three-dimensional simulation of the kink
instability is shown, where a finite-amplitude helical
perturbation develops to the initially pressure-balanced,
inhomogeneous plasma with 2 concentrated axial current.
Section 7 makes a summary of the paper and gives several
important remarks and the procedure of the parameter
design concerning the closely-coupled implicit method.

2. IMPLICIT ALGORITHM FOR
THE LOW-FREQUENCY KINETIC
PLASMA SIMULATION

This section first presents the fundamental equations
governing the electromagnetic field and particle motion.
These equations are discretized in time using the finite-
difference scheme which are then combined to yield the
Courant-condition-free, implicit equations to determine the
future electromagnetic field in a large time step compared to
the electron time scales. Finally, an implicit correction
method to the longitudinal (curl-free) part of the electric
field is described.

2.1. The Fundamental Equations
of the Field and Particles

In order to realize a kinetic simulation of plasmas in large
time-and-space scales, we introduce a slightly backward
time-descentered scheme. The Maxwell equations are used
to describe the electromagnetic field which with time level
suffices are written

1 /O0FE n+ 42 47!:.

E(__a_t_) =VxBn+m__C_Jn+:z’ (1)

1 6B n4+1/2

(e o
V-E*" =d4npt?, (3)
V-B"*!=0. (4)

Here, E and B are the electric and magnetic fields, respec-
tively, ¢ is the speed of light, and « s a decentering (implicit-
ness) parameter to be specified later. The current density j
and the charge density p are implicit quantitics which are to
be expressed as the functions of unknown electromagnetic
fields in Section 2.3.

The equations of motion for the ions are the standard

S81/10%/1-9
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Newton-Lorentz equations except the time level of the
electromagnetic field which are given by

4av. n+1/2 )
(%) =%[En+a(xj)+(‘,}:+1/2/c)xBn+u(xj)]’ (5)

dx A 12
()

A choice of the identical time level ¢ = 1" ** for the electric
and magnetic fields, which properiy reproduces the
ponderomotive force due to electromagnetic and Alfven
waves, differs from other impiicit algorithms [11-13, 15,
167. This point will be discussed in Section 7.3, By contrast,
the velocity in the Lorentz term must be exactly time-
centered to preserve the gyclotron motion.

For the motion of the electrons, there are two options.
The first one is to use the Newton-Lorentz equations,
Eqs. (5} and (6), for the ions, which allows us a fully-kinetic
simulation of the plasma, However, to retain the cyclotron
orbit effects such as diamagnetic drift and magnetization
currents, a rather small time step w, At~ Q(0.1} is
required. On the contrary, we choose the second option of
introducing the guiding-center approximation in order to
eliminate the electron cyclotron time-scale w2'. The
equations of motion are decomposed into the parallel
and perpendicuiar components with respect to the local
magnetic field, which are given by

e (%E)Ma
+{(—T——:f§)bx(%VB+vf|j%)}nﬂ, (8)
T o)

In Eq. (7), v;; 15 a scalar velocity {sign included) along the
magnetic field and y; = (3m. v}, ;/B(X;)), _o (=const) is the
magnetic moment of the jth electron with v, ; being its
thermal velocity. The unit vector along the magnetic field
line b= {B/B) is defined locaily at each particle position.
The three terms of Eq. {8) represent the E x B, gradient-B
and curvature drifts, respectively.

It is important to note that the time indices of each term
in Eqgs. (7)(9) must be consistent with their counterparts in
the Newton—Lorentz equation. For example, the time level
of the perpendicular velocity in Eq. {9) should be t="**
Otherwise, the electrons and ions would show different
responses (£ x B drift, etc.) to the low-frequency component
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of the electromagnetic field. The vector “parallel” velocity in
Eq. (9) is defined by

n4+1/2 _  n+ 120+
Vi =g b (k).

(10}

The parallel electric field and the differential operator are
defined, respectively, by E7,"* = (b"**-E"**) and &/dx, =
{b"*=.V). (Refer to the paragraph in Section 2.2 containing
Eq. (13} for the proof.)

The parameter x appearing in the Maxwell equations and
the equations of motion controls the degree of numerical
damping of high-frequency oscillations, The parameter o
must be always larger than § and in the range <o <. As
will be shown in Section 3.3, the decentering of the time level
in the curl terms of Egs. (1) and (2) causes damping of high-
frequency light waves. Attenuation of high-frequency elec-
tromagnetic and electrostatic waves with w At = O(1) which
arises from the plasma responses is accomplished by the
decentering of the electric and magnetic fields in the equa-
tions of motion [7]. Since a large time step w,. Af3 1 is
generally used, the Langmuir oscillations are eliminated.
A discussion will be made in Section 3.3 about how the
numerical stability and energy conservation of the simula-
tion runs are affected by the choice of the parameter .

As noted previously, there are two options with the equa-
tions of motion of the HIDENEK code. The guiding-center
approximation also of the ion motion is a natural extension
of the algorithm which may permit us simulations with a
larger time step with w,; 47 » 1. The polanzation drift needs
to be added to the ion momentum equation to sustain
propagation of the Alfven wave. On the other hand, the
guiding-center approximation breaks down when the
magnetic field strength approaches zero, ie., 6E, /B~ O(1),
as is the case with a plasma with magnetic null points. In
this situation, both the ions and electrons must be treated in
a fully kinetic fashion with Eqs. (5) and (6). The algorithm
for this case becomes less complicated compared to that
described in this section.

2.2. The Field and Particle Equations in
the Finite Difference Form

The field and particle equations given in Section 2.1 are
time-discretized using the finite difference scheme. The first
equation of motion for the ions is written

(1

e,

V;-H'] =\'J'-’+At—! [En+m+(v;+1/2/c)x§n+a],
m;

where At is a time step and the velocity is defined on the

integer time level as well as the position of the particles to

be mentioned later, The tilde quantity stands for the field
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that is evaluated at the predicted particle position X; usingl
the linear interpolation (area-weighting) of the field value
which is defined on the neighborhood grids x,,

E(x)=Y E(x,) S(x, ~X;). (12)

Here, S(x} is the weight function satisfying { S{x)dx =1
which acts to connect the particle (Lagrange) and field
(Eulerian)} quantities. The “predicted” position to evaluate
the electric and magnetic fields is the mid-point of orbits
which is defined by X7 * 2 = x7 + § ¢ vi 1'%, where vi 5 7 is
the velocity calculated by means of only the known field
values at ¢ =¢". The choice of the mid-point is particularly
important for the magnetic field in the Lorentz term of
Eq. (I1) to avoid fictitious drifts of particles. For the
trapped particles, a special care might be required to predict
their furture positions accurately around the turning points,

We solve Eq. (11) in terms of v} +1 uging the interpolation
vIT 2= L(y" +v"* 1} to obtain

‘.’;+1=V}!+Ai&{(E"+a+&X§"+m)+92Eﬂ+a
m; c

+9(E"+“+!£-XB"+°!)XE"+“}/(1+92)a (13)

nt+l __n n+ 172
X, =X, + At ¥y ;

(14)

where Ej*e=(E"**.b" )b, O(x) =1 dte,/mic)
|B{"*= It is mentioned in passing that the first term in the
right-hand side of Eq.{(13), v7, has been intentionally
separated out of the denominator (1 + @?) which includes
the future magnetic field B"*% In the |@|3> 1 limit which
corresponds to the guiding-center approximation, the first-
order terms yield

: 1 L4
‘,{1+Igv{r+AI ef En+a - ] Rrt+a n+x
” f L1 5 E +—1ch xb .
(15)

Decomposition of the parallel and perpendicular com-
ponents in terms of the direction of the magnetic field b **
gives

vijlchn+mxBn+z/Bn+a (16)
ot o+ L (BB, (17)
Ay J

These are obviously the leading terms of the guiding-center
equations of motion Egs. (7}-(8).
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The equations of motion for the electrons Egs. (7}-(9) are
similarly discretized in time and are given by

— - ) F;
R (o Ll A Pt g M)

vﬂj— 1/2 + vri+a(xn+lj2)}

F+1 __gn
X7t =x74 A1 {

(19)

The perpendicular velocity is a function of the future elec-
tromagnetic field as specified by Eq. (8), and the direction
of the parallel velocity is defined with respect to b"** by
Eq. (10).

The Maxwell equations are discretized with respect to
time and are written

E"" ! Et=cAtVxB""*—
B"+I—FB"=

4 Arj+e,
—c At VxE"¢

(20
(21)

In order to avoid the Courant condition which severely
restricts magnitude of the time step against the given space
grid intervals, we eliminate B” *! from Eqgs. (20) and (21) to
derive an implicit equation for E"*'. During this algebra,
we use for E"* 2 the linear interpolation of the field quantity
to the non-integer time level

E't*=gE"*' '+ (1—a)E", (22)
and a similar interpolation for B*** This procedure yields
the equation to determine the future electric field E**1,

(14 (ac A1) VxVx JE+!
=[1—a(l —a)c 4 VxVx]E"

+e At VB —4m Arj**>, (23)
Here, the V x B”** term has been split to the Vx B” term
and the VxVxE terms which appear on the both sides
of Eq. (23). The functional form of the current density in
the right-hand side of the equation is to be specified in
Section 2.3. The future magnetic ficld is obtained using
Eq. (21) once E"* ! has been known.

It is noted that, since the inequality (c 4t/4)*$ 1 holds
(Vx = 1/1), Eq.(23) is essentially decomposed into the
magnetic component VxB"** = (4n/c}j;** and the elec-
trostatic component E} 7' =E] —4x 41§77 where T and
L denote the transverse (divergence-free) and longitudinal
{curl-free} parts, respectively. The latter equation is
equivalently transformed into the continuity equation
(p"*1—p")Ar+V:ji**=0 by using Eq. (3). A deviation
of this longitudinal electric ficld from the true electric field
obtained by V. E"*' =dnp™t ' will be adjusted later. As has
been instructed here, the unity terms in the square brackets
make a significant contribution to the electrostatic part and
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cannot be ignored. Despite the simplicity of the decomposed
equations, however, we do not use them in the simulation.
The reason against the decomposed equations is that the
above magnetoinductive (Darwin) algorithm requires a
complete separation of the transverse current jr (V-j:=0)
from the longitudinal current j, (V xj; =0). This is a non-
trivial operation in the real-space and for the implicit
current density given in the next subsection; an incomplete
decomposition of the current components leads to poor
accuracy and numerical instability.

2.3. The Closely-Coupled Field-Particle Equations

a. The Time-Implicit Equations for the Electromagnetic
Field

To obtain the future electromagnetic field by Eq. (23}, the
current density must be specified to have a closure of the
equation. A prediction of the current density in the Maxwell
equations is the key of the implicit algorithm which must be
nonlinearly stable against a large time step. (A prediction
without suppression of the high-frequency plasma oscilla-
tions may fail for w,, 4¢3 2.) In the present algorithm, the
current density is directly expressed in terms of the future
electromagnetic field with the aid of the equations of
mation:

" x) = Ze Vi TES(x

.
—X7*7)

€; V!
e [v}'+adz-—{(ﬁ””+—-"—x§””)
m, ¢

+92Eﬁ+=+6(ﬁ"+“+5xﬁ"”)
c

-3

F=i

xﬁ”“}/(l +92)] S(x—x7*")

g elfiena (e

ﬂ 6 "4 ntx
( J)axn 5 )}E

+ VR ‘/2)] S(x—x;*")

—eVx Y phrres(x—x1+),

i=e

{24)

where @(x) =3 4z (e,/m,c)|B|”"* and v}* is given by
Eq. (8). The last term of Eq.(24) accounts for the
magnetization current j,, = —cVx (p'“b/B) of the elec-

trons under the guiding-center approximation. The symbols
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>,—;and 3 ._, denote summations over the ion and elec-
tron species, respectively. As before, the electromagnetic
field with the tilde is evaluated with the weighting scheme
Eq. (12}. The time level of ¥ | ; shouid be again 1 = "** to be
consistent with the ion cross-field response. The basic
unknown quantities in the right-hand side of Eq. (24) are
E" 1 and B+ l_

Substitution of the implicitly expressed current density
Eq.(24) into Eq.(23) yields the matrix equation to
determine the future electric field E"+1,

AE"+1=§ (E", B, E"*!, B ), (25)

The matrix A, on the left-hand side represents a vacuum
response which is defined by

A, =1+ (ac 46)* (VY —1V?), (26)

and the source vector S, on the right-hand side is given by
S,=[t—a(l —a)(c41)* (VV—VH] E"
+ec At V=B —dx At

A3 e v ads (e m (B s o)
=i

+(l+@2)]s(x—i;”)+ } (27)

The symbol VV denotes a dyadic operator and 1 the unit
tensor. (Refer to Section 3.1 for further modifications of the
above equations.) Equations (25)-(27) and (21 ) constitutc a
closed set of the Courant-condition-free, implicit equations
to determine the future electromagnetic field. These equa-
tions are named “closely-coupled field-particle (CCFP)
equations” after their nature of nonlinear coupling of the
fields and particles.

b. A Correction to the Longitudinal Electric Field

The third and fourth Maxwell equations, Egs. (3) and
(4), are the conditions to determine the initial value of the
electromagnetic field and they need not be used mathemati-
cally for ¢ > 0. However, it is well known that a discreteness
of the space grids which are commonly used in the simula-
tion introduces a small but finite error to the area-weighted
current density equation (24). The error occurs in such
a way that the current density thus obtained does not
satisfy the continuity equation with good accuracy, or
equivalently, Gauss’s law [227]. Hence, a correction to the
longitudinal (curl-free) part of the area-weighted current
density is required in each time step.

Strictly speaking, a small deviation in the longitudinal
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part of the current density affects both the iongitudinal and
transverse (divergence-free) parts of the electric field in the
impiicit aigorithm. However, except for a sharp gradient
region in a plasma, the deviation affects only the
longitudinal electric field. Thus, the longitudinal clectric
field is corrected afterwards using the Gauss’s law {3) and
the expansion method described in Ref. [23]. This correc-
tion method is verified since a cross talk between the
longitudinal and transverse components of the electric field,
which occurs through the implicit current density, is by
orders of magnitude small compared to non-cross talk
terms when the plasma density and magnetic field are
varying slowly. A similar correction method was used in the
direct implicit method [15, 16] and the previous version of
the closely-coupled implicit method [7].

For the correction of the longitudinal electric field, we
express the true electric field E**' as a sum of the electric
field before the correction £7** (the solution of Eq. (25)}
and the longitudinal correction which is a gradient of the
scalar function de,

E*+t 1 =E"+1_V de. (28)

Substitution of Eq. {28} into Gauss’s law (3) yields the
equation to determine ée,

—~V3p=4np"+t! —v.Er+1 (29)
Again, the charge density p"* ', which is not known at this
moment, needs to be obtained in an implicit fashion to
realize a large time step simulation. For this purpose, the
charge density is Taylor-expanded in terms of a small

displacement due to the correction electric field Vd¢ and
the vector identity is used [23]

prHx)=Y e S(x—x7*1)
i

~ 1
=Y e, S(x—xj},
J

—-V. (Z €;0x,5(x —x ! )
J
(30)

The displacement is defined by éx,=x7*'—x}};! with
x7*! being the true particle position at t=¢"*" and xJ;}
being the position calculated using the already known
electromagnetic field E“*! and B”*! The displacement
of the ions, for example, is calculated to be

ey

) 1
ox0= —sald1) L {Vop +Vopx OB+

i

+ 67V, }/(1+ 0%, (31)

where the vector operator is deﬁhed by ¥V, =b""*(b" . V),
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Since the final magnetic field has already been determined,
together with E"*!, at this stage, the displacement §x;,
hence, the charge density p” ", is solely a function of d¢.
By substituting Eq. (30} into Eq. (29) and shifting the
dp-dependent terms to the left-hand side, we obtain a
completely implicit equation to determine the correction
scalar potential So,

V2 8¢+ La(A1) V (0l (x){V Sp + 07V, 3¢
+@Vspxbj(l+6?)
+ w7 (x) V) 0¢)+dn(—e) ca At V
(Ve x (b/B) n.(x))

= —4np"t 4+ V.EHL (32)
Here, the zeroth order charge density is defined by
PPN x)=F,e8(x— x5 ") and  w),(x)=4an;(x)e;/m,.
It should be noted in Eq. (32) that the vacuum response
is mostly shielded by the plasma dielectric response. The
ratio of the plasma response to that of the vacuum is
approximated by 1a(4:)* (wZ(x)+b,w?,(x)) which is
much greater than unity in the plasma, due to 00 41> 1.

The procedures of the simulation using the method
described here are sumimarized in the Appendix. The par-
ticle ions and electrons are first generated in the Cartesian
{x, v) space. After collecting the current and charge den-
sities, j** and p'®, the initial electromagnetic field is deter-
mined. Using this magnetic ficld, the electron velocity is
converted from the Cartesian to (u, v, v} representations.
Then, a time cycle of the simulation begins. First, the
current density j and the charge densities of the ions and
electrons p;, p, are summed over particles. The elec-
tromagnetic field £+ ! and B”* ! are solved using the CCFP
equation, Eq. (25), and Eq. (21). Next, the charge densities
at time t=1""! are summed to make the correction to the
longitudinal part of the electric field using Eq. (32). Finally,
the velocity and position of all the particles are advanced by
a full time step to proceed to the new time cycle.

3. NUMERICAL METHODS FOR THE IMPLICITLY
COUPLED EQUATIONS

Following the description of the implicit simulation algo-
rithm in Section 2, this section gives a key approximation
and guidelines of the numerical techniques which facilitate
solution of the coupled field-particle equations, Dependence
of energy conservation of the simulation on the implicitness
parameter is also discussed.

3.1. A Key Approximation in the CCFP Equations

Here, we present an important and accuracy-preserving
approximation which makes the solution of the CCFP

131

equations possible under the limited computing resources.
As have been described in Section 2, the impiicit current and
charge densities, Eqs. (24) and (30), consist of summations
over the particles with the unknown electromagnetic field
being involved. Calculation of these terms, which represent
a coupling of the adjacent plasma elements through the elec-
tromagnetic field, becomes inhibitedly expensive unless the
following approximation is introduced to these coupling
terms:

Y fE"H(x;) S(x—x;)

J

=X (B (x) — Ei(x) + Eg(x))} Sx—x))  (33)

> aF(x)(E"{(x)— E,(x))+ Zﬁﬁo(xj) S(x—x,), (34)

where E, is a quantity which well approximates E"* ' and
E,=aE, + (1 —a) E”. The lincar interpolation Eq. (22) has
been used in the equality of Eq. (33). Note that (E"*' —E)
is paired in Eq. (34) to minimize an error associated with
this approximation and that the tilde is removed {rom this
term. The summation of f; over the particles becomes
F(x)=3,f,S(x —x,). Thus, the unknown electromagnetic
field is separated out of the summation over the particles.
Using this approximation, Egs. (25(27} given in Section
2.3(a) are rewritten

A(n,n ;BT EH I =§(E", B"; B"+1), (35)
Here, the matrix A comprises both the plasma and vacuum
terms as defined by

A=1+ (ac A1) (VV—1V3) + D
D= (a 40)* [0 (x){1 - Ob"**x 1
+@%(bb)" 2 }/(1 + ©%) + s (x)(bb)"+*]

—dn{—e) ca deln (x){B)b"+*x 1, (36)

where (bb) is a dyadic tensor and w},(x) which is propor-
tional to charge density p; can be highly space-dependent.
The unknown electric field E”*! has been removed from S,
to obtain the new source vector

S=[1—afl —a)(c 40)? (VV —=V2)]

xE"+cdtVxB"+ DE, —4xr At

x {): e, ‘:v;’+a At(e,/m,) (E0+E£x]§"+“)

j=1

+(1+@2)]S(x-i;‘“)+ } (37)
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As E; we often use the electric field of the last time step.
When E,| is chosen independently of the iteration for solving
the coupled ficld-particle equations, the summations in
Eq.(37) need to be calculated only once before the
commencement of the iteration.

It is extremely important to note with the aforementioned
approximation, that a major contribution to the summation
> fE"*S(x —x,) is contained in the second term of
Eq. (34) for which the double summation is taken
“accurately” while preserving the kinetic flavor of the
original equations. The first summation is taken to calculate
E(xj-) using Eq. (12) and the sccond summation to obtain
>, LE(x;) S(x —x;). The accuracy of this approximation
was numerically proved in the previous literature for the
thermal eigenmodes in the 21D magnetized plasma and for
the kinetic Alfven wave in the finite temperature plasma
L7 The present approximation greatly contributes to min-
imize a degradation of energy conservation. By constrast, a
simpler but less accurate approximation, ie., 3, ij"“(xj)
S{x —x;)= F(x) E"** has been tested in the application to
be shown in Section 4. However, the latter approximation
results in a rapid and monotonic decrease in the kinetic
encrgy, especially that of the electrons. The loss of the
kinetic energy may be attributed to the totally fluid-like
treatment which eliminates a kinetic coupling in the plasma.

3.2, The Solution of the CCFP Equations

It has been shown in Section 3.1 that the CCFP equations
are cast in the form of an implicit matrix equation:

AY = S(¥). (38)
Here, ¥ is an unknown column vector representing the elec-
tric field to be solved, A4 is the matrix which includes both
the plasma response and vacuum terms (V x V x ), and S the
source vector. Since the source § depends on ¥ nonlinearly
due to the choice of the magnetic ficld at the intermediate
time level, we need to use an iterative method for the solu-
tion of the matrix equation (38). In fact, E"** x B"** term,
for example, depends on E" ! quadratically since B"*!is a
function of E"* .

The method that we adapt to the solution of the nonlinear
equation Eq. (38) is a relaxation method. First, all the
Y¥-linear terms in S{¥) are shifted to the left-hand side to
treat the equation as implicitly as possible,

LY =0(¥). (39)
This equation is solved to obtain ¥ *) =L 'Q{¥"Y by
assuming that Q(¥) is known. The superscript (r) denotes
the last cycle of the iteration. The new value of the (r 4 1)th
cycle is given in a Newton—Raphson manner,

Pl o g4 (1 —g) PO (D<e<1) (40)
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The new value ¥* ! is then back-substituted to Q(¥) in
the right-hand side of Eq. (39), and the iteration is resumed
until a relative variation of the norm |%¥| becomes smaller
than a given tolerance. When the ¥Y-nonlinearity of ¢ is not
so strong, e=1 can be used in Eq. (40). However, even
when the W-nonlinearity is weak, the back-substitution
must be executed at least once and Eq. (39) must be solved
twice; in the first cycle of the iteration, the unknown B"+!
is being replaced by B” in Eq. (25).

In order to take an advantage of the implicit algorithm,
ie., to be free from the Courant condition, the above itera-
tion must be repeated several times to ensure that physical
informations propagate in space to adjust themselves. If we
start from a good initial guess which is usually the field
value of the last time step, only a few iteration cycles are
required before Eq. (38) converges. Actually, in one dimen-
sion the solution of Eq. (38) requires only a few (typically
four) iteration cycles before the iteration converges for the
tolerance of 105,

Concerning the solution of the core equation (39), several
methods have been tested to invert the matrix L. Experien-
ces imply that an accurate solution of the core equation is
essential to the nonlinear iteration described here. In the
one-dimensional case, the Gaussian elimination method has
been successfully applied since the matrix L is a sparse
band-matrix connecting the quantities of the spatially
adjacent grids [24]). However, in three dimensions with
N.xN_x N, grids, the matrix L becomes a huge band
matrix whose column size is of the order of (N, N, N ). This
makes the Gaussian elimination method impractical to use
for reasons of memory and accuracy. Alternatively at first,
an iterative method was applied to Eq. (392), where only the
diagonal terms were retained in the left-hand side to solve
the equation and the new solution was back-substituted to
the right-hand side of the equation. This iteration for the
core equation converged, but energy conservation degraded
eventually in the simulation because the nonlinear ¥-itera-
tion was affected by the inaccuracy of the core equation
solution.

In order to climinate the aforementioned difficulty
encountered in the solution of the core equation (39), the
bi-conjugate gradient (BCG) method [25] has been intro-
duced. In the BCG matrix solver, a recursive solution con-
verges steadily to the final solution which is to be obtained
in a finite number of iterations. Practically, a convergence of
the BCG solver depends on the method of preconditioning
the original matrix. A block-type BCG solver prescribes the
3 x3 core matrix elements simultaneously as a block; the
core matrix corresponds to the diagonal element ¥, =
(E., E,, E,} ;. On the other hand, a scalar-type solver pre-
conditions ¢ach row of the matrix separately. The block-
type solver converges much faster than the scalar-type one
when the skewed symmetric elements of the core matrix
which arise from the E x B drift are predominant over the



MACRO-SCALE KINETIC PLASMA SIMULATION

diagonal elements. The accuracy of the solution obtained by
the BCG method is quite satisfactory, and therefore, the
reliability of the nonlinear ¥-iteration and the simulation
itself have improved dramatically (Section 6).

For the solution of the closely-coupled field-particle
equations, the real (configuration) space is used in the
present implicit method {(HIDENEK). This is because the
matrix L of the CCFP equations in Eq. (39) is highly space-
dependent and the Fourier-decomposed left-hand side
FFT~'{L¥} becomes a convolution of almost all the
Fourier modes for the inhomogeneous plasma simulation.
This is particularly the case in the application of Section 6,
where a large helical perturbation takes place in the plasma
density and the magnetic field structure, in association with
the kink instability. In real space, by contrast, the matrix L
causes a coupling of only three points in the one-dimen-
sional case and 27 (=37) or less adjacent grid quantities in
the three-dimensional simulation. Therefore, the present
implicit algorithm prefers to treat the spatial iocalization
and inhomogeneity of the phenomena in real space; even for
a weakly inhomogeneous plasma, the iteration of the CCFP
equation converges more rapidly in real space.

To spatially discretize the closely-coupled ficld-particle
equations, a unique set of the non-staggered space grids is
used. The choice against the staggered (interleaved) grids is
that they make the boundary conditions and coding of the
CCFP equations quite complicated in three-dimensions
which results in the less-sparse band matrix L in Eq. (39).
With the non-staggered grids, all the particle informations
are accumulated to the same non-staggered grids on which
all the electromagnetic fields are calculated. The center-
differential scheme is used for the spatial derivatives so
that their mid-points are centered with respect to the
nen-derivative terms in the field equations. The spatial
derivatives have second-order accuracy in space.

The normalization of physical quantities to be adopted in
the applications of Sections 4-6 is related to the elec-
tromagnetic waves [31]. This consists of four basic units,
the length: ¢/w,,, time: @', mass: m, and the electronic
charge: e (absolute value). The (") quantities are nor-
malized quantities which are used in the simulation:

Other quantities such as the velocity, frequency, and
electromagnetic fields are normalized by combining these
basic units:

=

(42)

-

-y
f
o |-

, B=
pe mecwpe

With this normalization, the constant in the field equations
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is transformed as (4n)— (1/n;) and the light speed (c)
disappears cverywhere (ng: the average particle number
density per unit-length cube).

3.3. A Choice of the Time-Decentering
Parameter and Energy Conservation

The tmplicitness parameter « which appears in the equa-
tions of motion and the CCFP equations must be in the
range of 1 <a < 1 to damp out high-frequency electrostatic
and electromagnetic oscillations numerically. The proof of
the high-frequency wave damping in [7, Section 3] applies
to the present HIDENEK algorithm. Here, we will show the
stability and energy conservation of the present algorithm,
especially, against the electromagnetic waves and the
electron Ex B drift.

First, we focus on the electromagnetic response of the
algorithm and prove its numerical stability against elec-
tromagnetic waves. Since the fast (electron) time scale is
considered in this analysis, the lons are assumed immobile
and only the electron current is taken inte account: ji** =
(—e)nycE"**xB,/B:. For the monochromatic plane
wave E, B=E,, B, xexp[i(k -x —wt?)], we have

—iw At B = {ic Atk x B+ 12
_.QBA[ E""'l’lszo}
x exp(—i{a— 1) w A1),

—iw At BT P = —fe Atk x ETT2

(43)

x exp(—i(a — 1) w Af),

where Q,=4nc(—¢)ny/By=w,,/©,,. Eliminating B+
from Eqs. (43) and equating the determinant with zero, we
obtain the dispersion equation

(-2 on(- o)
(o)

In the vacuum (€ ;= 0), we obtain the frequency w, = +ck
and the growth rate w,= —ck(x —3) w A+ The choice of
a> 1 damps the light waves. In the plasma, the solution to
Eq. (44) for the long wavelength lLimit Qgy»ck (ie.,
W, /0., P cklw,,), becomes

(44)

W, = +02,

— (o — 50022 + (ck)?) 4t 43}
2 B *

1

i

Unfortunately, this solution applies only for |2,] 41 <.
Thus, a numerical solution of Eq.(44) is made for
Wpefw,=1, x=06, and w,, 4t=100 (the paramecters
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Here, 3m,v;=im,(v],+v],)+ u,B(x;,) for the electrons,
where v, ; represents only the drift motion. A contribution
of the constant magnetic fieid energy B is excluded in
Eq. (53).

4. THE ELECTROMAGNETIC ION
BEAM-PLASMA INSTABILITY

The first application of the closely-coupled implicit
method to the low-frequency nonlinear plasma phenomena
is a one-dimensional simulation of the electromagnetic ion
beam-plasma instability. When a tenuous ion beam
propagates along the ambient magnetic ficld through a
dense background plasma in a velocity faster than the
Alfven speed © ,, the electromagnetic ion—ion beam-plasma
instability is excited [26]. The instability was investigated
in connection with the diffused solar wind ions reflected
from the earth’s bow shock. Also a hybrid-particle simula-
tion with particle ions and massless electrons was performed
to find the origin of these ions {27].

Formerly, the hybrid simulation with particle ions and
massless electrons used to be a major tool of simulating the
low-frequency clectromagnetic waves and instabilities,
Implicit assumptions behind the hybrid simulations are (1)
the quasit charge-neutrality of the plasma, (2) no electron
orbit effects, and {3} instantaneous relaxation (adjustment)
of the electrons. Since the electron inertia and orbit motions
are ignored, particle and energy transport of the electrons
along the magnetic field is beyond the scope of the hybrid
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simulation. This situation occurs, for example, in the
parallel shocks, where the electrons are allowed to move
freely along the magnetic ficld. By contrast, in the closely-
coupled implicit method, the electrons are treated as inde-
pendent particle species so that their relaxation along the
magnetic field is naturally taken into account.

The dispersion equation for the electromagnetic ion
beam-plasma instability propagating along the ambient
magnetic field is given by [26, 27]

54
kv kv (34)

w—kVy _(w—kV,+o,

w2—62k2+2w;‘;j Aaﬂvz( ai' J)=0’
J ) i
where @, = (4nne;/m)*?, w;=e;B/m;c are the plasma
and cyclotron frequencies of the jth species, respectively.
Z(&) is the plasma dispersion function, v,= (27,/m,)""* is the
thermal speed, and V is the drift velocity along the ambient
magnetic field. There are two unstable roots to Eq. (54)
which are either resonant (¥¥,>0) or nonresonant
(kV,<0). The resonant mode has a larger growth rate and
its typical frequency, growth rate, and wavenumber in the
Valva® 1 and n,/n, <1 limits are o,/w,,~02, o,/o,~
(n,/2n,)'73, and &V jw,~ 1, respectively, where n, is the
density of the beam ions.

The parameters chosen in the HIDENEK simulation
are the ion beam speed V,=10v,, the beam density
n,{ng=10015, the ambient magnetic field strength
@Wefw,,=107% —and the electron plasma beta
B,=8mn,T,/B*=1 [28]. The electron and ion tem-
peratures ar¢ the same, T,/T,=1. The system is periodic

x 107

8
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The time histories of (a) the perturbed magnetic field energy; (b), (c¢) the kinetic energies of the beam and background ions, respectively;

and (d) the parailel kinetic energy of the electrons for the electromagnetic ion beam-—plasma instability with v,/6 =10 and n,/frg=15x 1072
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along the ambient magnetic field (z-direction) with the
length L, =2560c¢/w,, and 128 space grids. The mass ratio is
m;fm,= 100 and the number of particles for each species is
16,384. The time step is w,, Ar=2500. The decentering
parameter is «=0.6. A numerical filter is not applied.
These parameters correspond to w, Ar=25x10"7
v, A1/Az=0.13, and Az/A,=3x10* with 1,=v,//2 0,
being the Debye length.

Figurc 1 shows the time histories of the perturbed
magnetic field energy, the kinetic energies of the beam and
background jons, and the parallel kinetic energy of the elec-
trons. The instability grows exponentially and the magnetic
field energy peaks around w_;t ~ 70. The electric field energy
is roughly (v, /c)* times that of the magnetic field energy.
Later the magnetic energy decays to a quarter level com-
pared to the primary peak and small peaks follow the
primary one periodically. Large decrease in the beam
kinetic energy occurs in coincidence with the growth of the
instability. The background ions are heated roughly by
20%, but the electrons are hardly affected. As is found by
comparing Figs. la—c, the beam kinetic energy is mainly
converted to the magnetic energy and to some extent to the
background ions at the growth of the instability and vice
versa during the relaxation oscillations.

The large decrease in the kinetic energy of the beam ions
is attributed to the decrease in the drift speed (Fig. 2a).
Except for a temporary recovery of the beam speed at
Wt ~90, the beam speed continues to decrease. This
reveals that a part of the drift energy irreversibly goes to the
thermal energy of both the beam and background iens.
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FIG. 2. The time histories of (a) the average drift speed of the beam
ions and (b) the deviation of the system total energy in percent for the run
shown in Fig. 1.

MOTOHIKO TANAKA

Conservation of the total energy slightly degrades at the
growth of the instability which is expected from the discus-
sions in Section 3.3. However, the total energy deviates by
5% during the saturation of the instability and it recovers
to within 2% in the later times.

The electromagnetic ficld at the saturation time of the
instability @t =80 is shown in Fig. 3. The observed wave
that is excited by the instability is circularly polarized and is
consistent with the linearly most unstable mode (m =4-5)
of the electromagnetic ion beam—plasma instability. The
electric field looks somewhat jagged because the numerical
filter has not been applied. But, the phase relation between
the corresponding pairs of the electromagnetic field looks
fine, ie, B, ~ —E,, 8, ~ E,. The frequency and the growth
rate are measured to be w/w, =022+ 0.15{ for the mode
m =5 which are in reasonable agreement with the theoreti-
cal value w"*/w_;=0.23 +0.195.

The nonlinear behavior of the beam ions is shown in the
particle scatter plots of Fig. 4. The ions sitting initially
around V,=10v, (Fig. 4a) are significantly affected by the
instability as shown in Fig. 4b for @ ;¢ = 80. Obviously, the
average beam speed has drastically decreased. When viewed
in the (v,, v )} space, the beam ions are scattered in the
pitch-angle and they finally become equally distributed
along the arc whose center is located on the v, =0 axis at
(v 4. 0). Formation of the equally distributed arc is clearly
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FIG. 3. The electromagnetic field B,, B,, E,, and E, from top to bot-
tom, respectively, at e =80 of the electromagnetic ion beam-plasma
instability.
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FIG. 4. The distribution of the beam ions in the (v, v, } and (z, »,) spaces in the left and right columns, respectively, for (a) w_;f =0, (b} et =80,

and (c) w1 =200,

seen at w ;2 =200 in Fig. 4c. As noted previously, the elec-
trons behave almost adiabatically. Although the electrons
carry substantial £ x B current in the perpendicular direc-
tion, they are hardly affected and heated by the instability
because the wave frequency is by orders of magnitude
smaller than the electron cyclotron frequency, w/w,, <€ 1.

Before closing this section, a comparison of the present
results with those of other implicit and hybrid particie codes
is briefly made. The difference between the HIDENEK and
CELEST codes is that the former chooses the magnetic field
B"**in the equations of motion and optionally the guiding-
center approximation to the electrons, whereas the fully
kinetic electrons and B” are used in the latter [13]. The
hybrid simulation requires artificial viscosity to control
{(damp out) spiky oscillations in the perturbed magnetic
field, especially when the ambient magnetic field lies close to
the simulation plane [27], which makes the simulation
results somewhat artificial. Despite these dilferences, the
growth and saturation of the instability and associated non-
linear resuits such as scattering of the beam ions and
decrease in the beam drift speed have agreed generally well
among the three simulations of the electromagnetic ion
beam-plasma instability. The detailed comparison will be
made elsewhere.

5. THE ANISOTROPY-DRIVEN ALFVEN-
ION-CYCLOTRON INSTABILITY

As the second application of the HIDENEK code, the
simulation of the Alfven-ion-cyclotron (AIC) instability

is shown. A source of the free energy for this instability is
the ion temperature anisotropy. The AIC instability is
generated at the neutral beam injection into tokamaks
[29, 30] and in association with very anisotropic ions in
the foreshock region and the dayside region of the
magnetosphere of the earth [31-33]. The AIC instability
was shown to play a major role in generating the back-
streaming (“reflected”) ions from the earth’s bow shock
[31].

The dispersion equation of the Alfven-ion-cyclotron wave
which propagates parallel to the ambient magnetic field is
given by

W — 4 0, (g) 2(8)+ o (ﬁ”) 2(2)
2 TfJ.
— o (1-72) 1+ &z =0

(55)

Whe['e éez (U.) i- \wcei )/kue! é:‘ = (ﬂ)¢ mci)/kuil\’ and Ue’ U!
are the thermal speeds of the electrons and ions, respec-
tively. The perpendicular temperature of the ions, T, , is
defined by

To=2x[ doy [ doivs (bmwd) filoy,v.) (56)

Here fi(v,,v.) is the velocity distribution function of
the ions. When the perpendicular temperature is larger
than the parallel temperature, ie., (T /T));>1, the AIC
waves become unstable. The typical frequency in the
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large anisotropy limit is w,/w,~1, the growth rate is
w, /@~ (B;1/2)'? and the wavenumber is ck/w, ~ 1,
where B, =8znn,T. /B* is the ion beta value in the
perpendicular direction. The aforementioned dispersion
equation implies that any ion velocity distribution with the
same temperature anisotropy is equivalent in generating the
AIC instability [29, 31].

At the beginning of each simulation, the ions are
loaded so that their temperature anisotropy becomes
(TL/T)io=5-20. The electrons are loaded isotropically.
The other parameters are the system size L, = 120c/w,,, the
electron thermal speed is v,/c = 0.2, the temperature ratio is
T, /T.=1, and the ambient magnetic field strength is
0./, =0.7. (Note that the electron cyclotron frequency
does not appear in the simulation.) This corresponds to
w,./w,;= 0.1 for the choice of m,/m,=50. The ion parallel
beta value B, =8n,T, /B> becomes approximately
8 x 1072, The system is periodic in the z-direction and the
number of the space grids is 128. The number of particles
for each species is 12,800, the time step is w,, 41=20
(e, 4t=0.28)}, and the decentering parameter is o= 0.6.
The quiet start technique of loading four particles in pairs is
used to minimize the initial noise.

The time histories of the perturbed magnetic and electric
field energies are shown in Fig. 5 for the (T, /T), =20 case.
The magnetic field grows exponentially out of the initial
noise level and saturates around o, ;¢ ~ 20. For the electric
field, since the electrostatic noise field initially dominates
over the electromagnetic component, the instability appears
to emerge abruptly at w7~ 10. The growth rate of the
instability is measured to be @;/w,;~0.44 for the most
unstable mode (m = 3) with ck/w,, ~ 1.1. This is in excellent
agrecment with the linear theory of the AIC instability,
@"{w,,=0.84 + 0.45{. Relaxation of the ion temperature
anisotropy, (T, /T ), is shown in Fig. Sc. When the inten-
sity of the perturbed magnetic field reaches a certain level,
ie, {6B*)/8nnT,= 1'x 1072 the temperature anisotropy
begins to decrease. This process occurs in a relatively short
time scale, 13w ;' for the (T, /T)),0 = 20 case.

The total energy of the system decreases by a few percent
as shown in Fig. 5d. The decrease in the total energy is
clearly associated with the buildup of the electric field
energy due to the growth of the instability. After the
instability saturates around ¢ ~ 20, the decrease in the
total energy becomes slower. This behavior of the total
energy is consistent with the argument in Section 3.3; the
first integral of Eq. (52) vanishes in the periodic system, and
the second integral which is positive definite becomes
largest when the electromagnetic field amplitude changes
rapidly. Hence, |dW,, /d?| takes the maximum value at this
stage.

A series of ion scatter plots in the (v, v,), (z, v), and
{z, ) spaces in Fig. 6 shows a remarkable pitch angle scat-
tering of the anisotropic ions during w,t= 10-20. Here,
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FIG. 5. The time histories of (a) the perturbed magnetic field encrgy,
(b} the electric field energy, (c) the temperature anisotropy (T, /7T));, and
(d) the deviation of the total energy (in percent) for the Alfven-ion-
cyclotron instability of the initial anisotropy (T, /T )y = 20.

Y =tan~'(v,/v,) is the phase angle of the perpendicular
velocity of the ions. This scattering is most clearly observed
at the change in the ion distribution in the {,, v, ) space;
the distribution evolves from the initial needle-like distribu-
tion into an isotropized, round-shaped distribution. The
anisotropy becomes completely relaxed by w;¢ ~ 50. This
pitch-angle scattering is the origin of the decrease in the
temperature anisctropy shown in Fig. 5c.

In order to check the relaxed final temperature
anisotropies, several runs are made systematically. The run
with the small anisotropy (T, /T,},, = 5 requires a long run
up to w,t~300 to have a complete relaxation of the
anisotropy. For the (T, /T,);o = 20 case, another run is pet-
formed with a longer system size L, = 240c/w,, because the
longer wavelength modes can be still unstable in the late
stage of the instability with reduced anisotropy. The
anisotropy ceases to decrease completely at w_;t ~ 70. The
final temperature anisotropies thus obtained for the initial
anisotropies of 5, 10, and 20 are, respectively, 2.0, 1.8, and
1.9. The fact that the relaxed temperature anisotropy,
(T,/T)),=2, is almost independent of the initial tem-
perature anisotropies agrees with previous literature
[29,317.

A more interesting observation is the modulation of the
ions and electrons both in the velocity and configuration
spaces. The ion modulation in the phase space (z, ) at the
end of the linear stage (Fig. 6b) is in-phase with the
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pressure. The drift speed and the plasma temperatures
must be consistently chosen so that the pressure balance
n(T,+ T:) + B*/8n = const. be satisfied radially. Otherwise,
a rapid pinch (or expansion) of the initially-loaded plasma
results in the finite-beta plasma simulation.

Other parameters are the ambient magnetic field strength
0'®/w, =1, the temperature ratio T,/T,=1, and the
electron beta value 8, =8, T,/B” =0.04. The mass ratio
is m;/m,=400 and the time step is w, 4= 100 (ie.,
w,, At ~0.25). The implicitness parameter is a=06. The
safety factor of the plasma, which is the tatio of the number
of toroidal rotation of the magnetic field line to that of its
poloidal rotation, becomes ¢®(r)= 0.6 at the radial dis-
tance = L,. Thus, a helical rotation is initially present in
the magnetic field structure (not in the current). By contrast
to one-dimensional simulations in Sections 4 and 5, a digital
filter is introduced to smooth the source terms of the CCFP
equations. The digital filter helps to reduce the fluctuating
electric field level arising from a grid-to-grid scale charge
separation of plasma particles for which the {inite spatial-
differencing does not have a correct resolution. The weight
of sampling for the consecutive five points along one
direction is (— &, 1%, %, 1. — fs) (cf. Appendix of [5])
and the digital filter is applied once to each direction in a
tritinear fashion.

The simulation run has been continued up to @p!=
26x10* or t=3.57,. Here, the poloidal Alfven time is
defined by t,=2L,/v,~T4x100, ' with v, =
B, /(4mm;n)'” being the poloidal Alfven speed. The time
history of the magnetic field energy is shown in Fig. 8a (the
constant part (B,)? has been omitted). A sudden increase in
the magnetic field energy takes place at the beginning of the
simulation. This is a self-adjustment of the beam—plasma
system because the initial current flows in the z-direction
which is not exactly along the helical magnetic field. The
magnetic field energy increases gradually to f= 3.5t ,. The
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FIG. 8. The time histories of (a) the magnetic field energy, (b) the ion
kinetic energy, () the electron kinetic energy defined by W, = ym &) + uB,
and {d) the deviation of the system total energy (the constant part (ByY is
excluded in ).

electric field energy is dominated by the component due to
the radial electric ficld which appears to be almost inde-
pendent of the instability. The ion kinetic energy in Fig. 8b
increases slightly during the simulation which is attributed
to an increase in the perpendicular temperature. On the other
hand, the electron kinetic energy decrcases monotonically
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FIG. 9. The cross sections (at ¥ =3L,) of the current and charge densities in the upper and lower panels, respectively, at {a) 1=0277, and
(b) £ =3.2t4.
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(b)

F1G. 10. The bird’s-eye-view scatter plots in the (x, y, z) space at (a)
=027t and (b), (c) r=327,. The plots are for the ions except for the
clectrons in (¢). The helical perturbation has the mode number mfr = 1/1.
{Note the length in the z-direction has been squeezed).

which arises from a decrease in the parallel temperature.
This is considered to be an artificial cooling caused by
incomplete Debye shielding. The total energy of the system
deviates about + 5% during the simulation as shown in
Fig. &d.

The cross-sectional plots of the current and charge den-
sities of the ions at the mid-plane (y = L,/2) are shown in
Fig. 9for (a) t=0.277 , and (b) t = 3.21,. The left-hand side
panels correspond to the early state after the initial transient
motions have subsided. In the right-hand side panels, we
can see a deformation of the beam current which has been
projected to the toroidal mid-plane. The dominant mode
number of the deformation in the z-direction is found to be
n=1. The whole aspect of the deformation of the beam
current is better observed in the bird’s-cye-view scatter plots
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FIG. 11. A hodogram plot of the center of the beam axis at =321 ,.
The number i corresponds to the toroidal position z=(L,/8.

of ions and electrons in Fig. 10. The top panel is the plot for
the ions at r=0.27t, and the middle and bottom panels
show the ion and electron species at = 3.2t ,, respectively.
Almost the same spatial distortions are observed both in the
electrons and ions. Here, it is found that the aforementioned
deformation is a helical perturbation which is occurring in
the three-dimensional space.

Figure 11 is a hodogram piot of the location of the beam
center. The toroidal direction is divided to eight bins and
the positions of the ions (x;, y;) in each bin are averaged.
The number i in the figure is the bin number which
corresponds to the z-position z=1iL_,/8. The center of the
circle in the figure coincides with that of the poloidal cross
section and its radius is 3.5¢/w,,. It is seen that, except for
a strayed and slow movement around 8-1-2, the beam axis
rotates in the clockwise direction toward the positive
z-direction. This helical pitch is the same as that of the initial
magnetic field. The mode number of the helical distortion of
the beam axis is determined to be m/n = 1/1,

The poloidal component of the magnetic field is shown in
the consecutive poloidal cross-sectional plots at r=23.21,
(Fig. 12). The toroidal separation between the two adjacent
cross-sections is fL_. The center of the magnetic axis

(d)
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FIG. 12.
amplitude of the poloidal magnetic field is 0.21 in the simulation unit.

The poloidal magnetic field (8

.+ B,) in the consecutive poloidal cross sections (toroidal separation of L,/4) at t = 3.2t ,. The maximum
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(null point of the poloidal magnetic field ) is seen to shift in
the poloidal cross sections. Plotting the locations of the
magnetic axis, as we did for the beam axis, again shows
a clockwise rotation of the magnetic axis toward the
z-direction. By considering the plasma geometry used in the
simulation and the fact that the helical deformation of the
beam and magnetic field has occurred in a few poloidal
Alfven times, we can conclude that the present instability is
the ideal (external) kink instability [36].

7. SUMMARY AND CONCLUDING REMARKS

7.1. Summary

A new and advanced plasma simulation method—
the closely-coupled implicit method (HIDENEK), was
described in this paper which is suitabie for studies of low-
frequency, large space-scale kinetic phenomena in the finite-
beta, inhomogeneous plasmas. The present simulation
method included the physical processes caused by the elec-
tron inertia and motions along the magnetic field which
were totally ignored in the traditional hybrid particle
simulations. The key of this implicit method consisted in the
completely implicit, CCFP equations which were free from
the Courant condition. These equations were derived by
combining the equations of motion and the Maxwell
equations. In order to incorporate the diamagnetic and
magnetization effects while eliminating both the plasma
and cyclotron frequencies of the electrons, the slightly
backward time-decentered scheme and the guiding-center
approximation to the electrons were adopted. The code was
successfully implemented in the HIDENEK code from one
to three dimensions.

In the present simulation method, the electromagnetic
field was solved in the real (configuration) space for better
treatment of the coupled field-particle equations. A very
efficient and accuracy-preserving approximation was intro-
duced in Section 3 to the coupled summation terms over the
particle and unknown field quantities. This made the solu-
tion of the CCFP equations possible under the limited com-
puting resources while retaining the full kinetic flavor of the
equations. For the solution of the huge matrix equation thus
derived, the Gaussian elimination technique was applied in
the one-dimensional simulations (Sections 4 and 5), and the
bi-conjugate gradient method was used in the three-dimen-
sional simulation (Section 6). The numerical stability and
energy conservation of this implicit method against the
implicitness parameter were also discussed in Section 3.

As a verification and demonstration of the application
area of the closely-coupled implicit method, three physics
applications were presented in Sections 4 and 5 for one
dimension and in Section 6 for three dimensions. In the first
two applications, the electromagnetic ion beam-plasma
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instability and the Alfven-ion-cyclotron instability were
shown to be excited by tapping the free energy from either
the drift motion of the ion beam or from the anisotropy of
hot ions. In both cases, the ions suffered from a significant
pitch-angle scattering and strong modulation in the velocity
and configuration spaces. Precisely, in the first application,
the drifting beam ions were substantiaily slowed down and
scattered in the nonlinear stage of the instability. In the
second application, the temperature anisotropy of the
hot ions was completely isotropized by the self-excited
circularly polarized electromagnetic waves; the anisotropy
relaxed to (7T, /T,);=2 irrespective of the initial tem-
perature anisotropies. In the third application to the three-
dimensional plasma, the density-peaked ion beam with the
safety factor less than unity was shown to undergo a helical
distortion by the external kink instability in the ideai
magnetohydrodynamic time scaie.

7.2. A Design of the Simulation Parameters

For the purpose of designing suitable simulation
parameters, it would be useful to clarify the restrictions of
the present simulation method with respect to the time step
and the grid size. The first restriction on the time step arises
from the necessity to accurately keep track of the ion
cyclotron motion,

W, A <0.2. (57)

The second restriction is a transit time condition which is
required to resolve the structure of the scale length
;L = 2:"r/kll,max’

Ky max 0y 41 €1, (58)

where v, is the fastest speed along the magnetic field. The
third restriction appears in the combination of the time step
and the grid size,

0(0.1) < v, dtjdx < O(1). (59)

The lower inequality arises from an aliasing due to the
coarse grid instability [5, 11] and the upper inequality from
the accuracy of the expansion used in Eq. (30) and that
of the predicted particle position X7*'? (see just below
Eq. (12}). Actually, the second restriction {(58) can be
similar to the upper inequality of Eq. (59).

A slight difference of the predicted particle position X7+ '/
which is used to evaluate the particle position x;*!? can
also be a source of numerical heating of the plasma. The
difference of the two positions for the electrons, which



MACRO-SCALE KINETIC PLASMA SIMULATION

can be more relevant than the ions because of their large
thermal velocity, is written as

5xDEx;'+”2—i;'+”2 (60)
~ 1 2(_8) n+a n I n+a "
> EAK T(E” —EII)+§AZ(V_L —V_L). (61)

The restriction may be given in the form of the accuracy
condition

|6 p|
Ax

Ii?

{141(”") (E]’(”—Eﬁ)+("'l”—"'l)} <1

2 m,

ar
24x
(62)

The electric field in Eq. (62} includes both the physically
evolving component and the thermal fluctuation due to par-
ticle discreteness. If we assume a monochromatic sinusoidal
wave, E|| ~ ¢ for the physical component, we have

ENPr— Efmioo At E). (63)

Since w At <1 holds for the physicaily resolved modes in
the sirmulation, |dx,| can be negligibly small compared
with the cell size if the value (v, 4¢/4x) is chosen to be of
the order of unity (eE,, At/m,<v,). However, with too few
particles per cell, the deviation due to the fluctuating electric
field may be as large as

[6xp.,| At

Ax  24x - (89)

1 (—e)
{Edt_rn—Ef+vL'f}

€

This deviation can be small compared to unity if the
acceleration due to the fluctuating electric field is kept small
such that

At [(e/m,) E;| Q. (65)

Summarizing the above arguments, the following proce-
dure may be constructed for the choice of the simulation
parameters. First, we note that there are often characteristic
spatial scale-lengths in the plasma phenomena, especially
in the wave and instability problems. The grid size is
then determined from a resolution requirement. Next, if we
specify the magnetic field strength and the electron beta
value, the electron thermal speed is determined by

Ve /7 Wece
== ‘/Ewp; (66)
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Referring to the conditions Egs. (58) and (59), the range of
an allowable time step is determined against the chosen
space-grid size. Here, of course, the physics condition
wy 4t € 1 must be satisfied, where w, is the characteristic
frequency of the phenomena. It is also appropriate to follow
condition Eq. (65) in order to minimize artificial heating of
the plasma, with which the upper limit of the time step or
the minimum number of simulation particies are estimated
Although there are several restrictions on the time step to be
accounted for, it is not so difficuit to find an appropriate
time step. Finally, the condition Eq. (57) is referred to in
order to determine the lower limit of the mass ratio {(m,/m,).
At this stage, all the parameters may have to be reshuffled
to expand their allowable range of variation or to fit the
simulation run into the given computing resources.

7.3. Technical Remarks

Several remarks and future plans are mentioned here con-
cerning the closely-coupled implicit method (HIDENEK ).
First, it is important to use the identical formula in the
equations of motion and the corresponding parts in the
CCFP equations. This must be kept in mind when one
wishes to modify or extend the present algorithm. Second,
the same arca-weighting scheme should be applied both in
the evaluation of the electromagnetic field at the particle
position and in the assignment of the patticle information to
the space grids. A violation to these rules causes poor
momentum and energy conservation and makes the simula-
tion susceptible to numerical instabilities.

1t was stated in Section 2 that the magnetic field B*** of
the time level 7= ¢"* * is used instead of B” in the equations
of motion. The consistency of this choice may be verified in
the following example. Let us consider a monochromatic
Alfven wave in one dimension, ie, E,, B,x
expli(kz — wi)]. Both the perturbed electric and magnetic
fields are perpendicular to the wave vector that points to the
z-direction. A numerator of the E x B drift term is written

E.xB =E, xB,+E, x((cja)kxEL),  (67)

where (') stands for a time level t = ¢’ and non-(') quantities
are defined at r =" * Also Faraday’s law B, = (¢c/w )k x E},
has been used. A difference due to the choice of the magnetic
fieid’s time level occurs in the second term of Eq. (67).
For t'=1"*" the second term becomes v,=(ck/w) EZ.
However, for any choice of ¢’ # ("%, we have

vy = (ckjo)(E, - E{) = (ckjw) E cos(wdt)

= (ck/w) E2[1— Hwdr)?], (68)
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